Better algorithms for BPF

Resizable HASHMAP

- Rhashtable-based map

- John Fastabend’s “Right-sizing is hard, Resizable maps for optimal map size”
- https://Ipc.events/event/7/contributions/681/

https://lpc.events/event/7/contributions/681/

HASH_RESIZE Benchmark

Map Operations per second (4B key, 4B value)

Updates

50/50 Mix 25/75 Mix 10/90 Mix

1/99 Mix

Lookups

g0
cilium

HASH NO Prealloc
HASH
HASH_RESIZE

HASH_RESIZE+_reuse

28

Alternatives to HASHMAP

- Red-Black tree

https://lpc.events/event/7/contributions/681/

Alternatives to HASHMAP

- Trie-based implementation

https://lpc.events/event/7/contributions/681/

QP-trie

- https://dotat.at/proa/ap/README .html
- https://qgithub.com/fanf2/gp

- Some encouraging upstream results from Hou Tao:
https://lore.kernel.org/bpf/8b4c1ad2-d6ba-a100-5438-a025ceb7f5e1@huawei.com/

“... after adding -march=native, both the lookup and update performance of
gp-trie are improved. And the lookup performance of qp-trie is always better
than tst, but the update performance of gp-trie is still worse than tst.”

https://dotat.at/prog/qp/README.html
https://github.com/fanf2/qp
https://lore.kernel.org/bpf/8b4c1ad2-d6ba-a100-5438-a025ceb7f5e1@huawei.com/

Sorted lookup table benchmark

@ Construction [l Lookup ¥ Memory Overhead

30

20

10

Radix Tree Critbit Tree Red-Black Tree QP-trie

https://9vx.org/post/qp-tries/

NMI curse

- NMI requires everything preallocated
- Which is hard (impossible?) for RB tree, QP trie and such

- Possible solution: allow offloading work out of NMI

Kernel-to-kernel BPF ringbuf
irg_work_queue() for BPF programs

How do we decide?

Benchmarks! Benchmarks! Benchmarks!

Improved hashing algorithms

- Currently we use jhash (aka lookup3.c)

- 15 years of improvements for hashing algorithms since then

- BPF_MAP_STACK_ TRACE suffers from collision

- HASH, BLOOM_FILTER, etc will benefit from better and faster algo

Improved hashing algorithms

- Currently we use jhash (aka lookup3.c)

- 15 years of improvements for hashing algorithms since then

- BPF_MAP_STACK_ TRACE suffers from collision

- HASH, BLOOM_FILTER, etc will benefit from better and faster algo

Is xxHash by Yann Collet the way to go?..

xxHash vs others

https://github.com/Cyan4973/xxHash

Hash Name

XXH3 (SSE2)
XXH128 (SSE2)

RAM sequential
read

City64

T1ha2

City128
XXH64

SpookyHash

Mum

XXH32
City32
Murmur3

SipHash

FNV64

Blake2

SHA1

MD5

Width

64

128

N/A

64

64

128
64

64

64

32
32
32

64

64

256

160

128

Bandwidth
(GB/s)

31.5 GBJs

29.6 GB/s

28.0 GB/s

22.0 GB/s

22.0 GB/s

21.7 GBJs
19.4 GBJs

19.3 GB/s

18.0 GB/s

9.7 GB/s
9.1 GB/s
3.9 GB/s

3.0 GB/s

1.2 GBJs

11 GBJs

0.8 GB/s

0.6 GB/s

Small Data
Velocity

1331

1181

N/A

76.6

99.0

57.7
71.0

53.2

67.0

71.9
66.0
56.1

43.2

62.7

5.1

5.6

7.8

Quality

10

10

N/A

10

10
10

10

10
10
10

10

10

10

10

Comment

for reference

Slightly worse
collisions

Slightly worse
collisions

Poor avalanche
properties

Cryptographic

Cryptographic but
broken

Cryptographic but
broken

xxHash: long vs small inputs dichotomy

XXH3 has been designed for excellent performance on both long and small inputs

Latency for small keys of random size [1-N]

200,000,000
180,000,000
160,000,000
140,000,000
120,000,000

100,000,000

Nb hashes per second

80,000,000

60,000,000

40,000,000

20,000,000

13 s 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 S5 57 59 61 63 65 67 69 71 73 75 77 79 81 83 8 87 8 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121 123 125 127 129

t1ha2 == crc32 fvea

XXH32 XXHE4 mmh3_x68 seeeee Citysd (noseed) = city64 (with seed) =esees farmh (no seed) (with seed)

xxHash

- We have xxh32 and xxh64 contributed back in 2017 for zstd
- Let’'s jump to 2022 and have xxh3 in Linux!

Maintainers would be happy to review contributions (w/ benchmarks)!

BPF ringbuf evolution

- User-to-kernel ringbuf
- Kernel-to-kernel ringbuf

- BPF program called for each record (PROG_TYPE_ SYSCALL equivalent)

BPF_RINGBUF_SUBMIT command runs BPF prog on each sample?
Kthread to run each BPF program?

- bpf_dynptris an interface to a memory
- Need to work through guarding against malicious user-space

