Better algorithms for BPF



Resizable HASHMAP

- Rhashtable-based map

- John Fastabend’s “Right-sizing is hard, Resizable maps for optimal map size”
- https://Ipc.events/event/7/contributions/681/



https://lpc.events/event/7/contributions/681/
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Alternatives to HASHMAP

- Red-Black tree



https://lpc.events/event/7/contributions/681/

Alternatives to HASHMAP

- Trie-based implementation


https://lpc.events/event/7/contributions/681/

QP-trie

- https://dotat.at/proa/ap/README .html
- https://qgithub.com/fanf2/gp

- Some encouraging upstream results from Hou Tao:
https://lore.kernel.org/bpf/8b4c1ad2-d6ba-a100-5438-a025ceb7f5e1@huawei.com/

“... after adding -march=native, both the lookup and update performance of
gp-trie are improved. And the lookup performance of qp-trie is always better
than tst, but the update performance of gp-trie is still worse than tst.”


https://dotat.at/prog/qp/README.html
https://github.com/fanf2/qp
https://lore.kernel.org/bpf/8b4c1ad2-d6ba-a100-5438-a025ceb7f5e1@huawei.com/
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NMI curse

- NMI requires everything preallocated
- Which is hard (impossible?) for RB tree, QP trie and such

- Possible solution: allow offloading work out of NMI

Kernel-to-kernel BPF ringbuf
irg_work_queue() for BPF programs



How do we decide?

Benchmarks! Benchmarks! Benchmarks!



Improved hashing algorithms

- Currently we use jhash (aka lookup3.c)

- 15 years of improvements for hashing algorithms since then

- BPF_MAP_STACK_ TRACE suffers from collision

- HASH, BLOOM_FILTER, etc will benefit from better and faster algo



Improved hashing algorithms

- Currently we use jhash (aka lookup3.c)

- 15 years of improvements for hashing algorithms since then

- BPF_MAP_STACK_ TRACE suffers from collision

- HASH, BLOOM_FILTER, etc will benefit from better and faster algo

Is xxHash by Yann Collet the way to go?..



xxHash vs others

https://github.com/Cyan4973/xxHash
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xxHash: long vs small inputs dichotomy

XXH3 has been designed for excellent performance on both long and small inputs

Latency for small keys of random size [1-N]
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xxHash

- We have xxh32 and xxh64 contributed back in 2017 for zstd
- Let’'s jump to 2022 and have xxh3 in Linux!

Maintainers would be happy to review contributions (w/ benchmarks)!



BPF ringbuf evolution

- User-to-kernel ringbuf
- Kernel-to-kernel ringbuf

- BPF program called for each record (PROG_TYPE_ SYSCALL equivalent)

BPF_RINGBUF_SUBMIT command runs BPF prog on each sample?
Kthread to run each BPF program?

- bpf_dynptris an interface to a memory
- Need to work through guarding against malicious user-space



