
Debug with BPF in a 
Container

Song Liu, LSFMMBPF 2022



BPF for debugging

• BPF enables great debugging tools, as long as you have CAP_BPF
• CAP_BPF is not really secure
• Not friendly to containers
• Is there a sweet spot that is secure and useful?



Secure BPF programs

• Tool writers define secure BPF progs for non-root users (setcap, 
pinned programs/maps). cons: not flexible.
• Mandatory filtering based on ownership
• Non-root user’s BPF program only triggers on events owned by this user
• Ownership: current task, perf_event, socket, etc.

• Security enhanced map. For example, task local storage, non-root 
user can only access elements on its own tasks



Survey of 41 tools in bcc/libbpf-tools

• 24 tools use filtering on current task
• 3 tools with "start-end" model
• Start-prog adds a value to hash map (process context)
• End-prog calculates the output (irq context)
• Example: I/O latency

• 4 tools use sched_switch or similar tracepoints
• 3 tools attach to perf_event, 
• 4 tools work with socket (tcp_connect, etc.)
• 3 tools on tracepoint/kprobe/fentry in IRQ, softirq



Ownership: current and perf_event

• Filtering on current task is good for process context
• Non-root user can create task perf_event



Ownership: current and perf_event

• 24 tools use filtering on current task 👍
• 3 tools with "start-end" model
• 4 tools uses sched_switch or similar tracepoints
• 3 tools attach to perf_event👍
• 4 tools work with socket (tcp_connect, etc.)
• 3 tools on tracepoint/kprobe/fentry in IRQ, softirq



Handle start-end model

• Start-prog is filtered based on current task
• Add a key (bio, skb, etc.) to a hash (BTF enabled? Referenced?) map in 

start-prog
• Filter before end-prog, if the key is not in the hash map, skip end-

prog. Remove key after end-prog



Ownership: start-end model

• 24 tools use filtering on current task 👍
• 3 tools with "start-end" model 👍
• 4 tools uses sched_switch or similar tracepoints
• 3 tools attach to perf_event👍
• 4 tools work with socket (tcp_connect, etc.)
• 3 tools on tracepoint/kprobe/fentry in IRQ, softirq



Handle Socket

• A root-maintained program that manages maps of socked owned by a 
user
• Filter based on key in this map



Ownership: socket

• 24 tools use filtering on current task 👍
• 3 tools with "start-end" model 👍
• 4 tools uses sched_switch or similar tracepoints
• 3 tools attach to perf_event👍
• 4 tools work with socket (tcp_connect, etc.) 👍
• 3 tools on tracepoint/kprobe/fentry in IRQ, softirq



Handle sched_switch

• Worth some special handling
• Use two programs, one for prev task, the other for next task
• Apply filtering based prev or next



Ownership: sched_switch

• 24 tools use filtering on current task 👍
• 3 tools with "start-end" model 👍
• 4 tools uses sched_switch or similar tracepoints👍
• 3 tools attach to perf_event👍
• 4 tools work with socket (tcp_connect, etc.) 👍
• 3 tools on tracepoint/kprobe/fentry in IRQ, softirq



38/41 (92.7%) useful

• 24 tools use filtering on current task 👍
• 3 tools with "start-end" model 👍
• 4 tools uses sched_switch or similar tracepoints👍
• 3 tools attach to perf_event👍
• 4 tools work with socket (tcp_connect, etc.) 👍
• 3 tools on tracepoint/kprobe/fentry in IRQ, softirq



Use trampoline for filtering

• Root (or kernel) controlled fentry program(s) attached to each non-
root BPF program to decide whether the non-root BPF program 
should run
• Default skip mode, if no fentry program is presented, skip the non-

root BPF program



bpf_lsm_bpf

• Hook(s) on sys_bpf(). Root attaches programs to decide whether 
an operation is allowed for non-root users. 
• Verifier generates attributes about the program, which will be used to 

decide whether BPF_PROG_ATTACH is allowed. Potential attributes:
• Uses sensitive helpers (e.g., bpf_probe_read_kernel)
• Needs filtering based on socket
• etc. 



Key kernel work, TBDs

• Default skip mode
• How to attach the fentry program? 

• bpf_lsm_bpf hook(s)
• Verifier generates attributes of a program


