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Goal: Cross-plat libbpf and bpftool

• Why:
• Get more people making them better, rather than reimplementing them

• Allow more easily writing cross-platform apps that use libbpf

• How:
• Refactor to split platform-agnostic functionality from platform-specific stuff
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Categories of issues

1. Compiler-specific code

2. Platform-specific code

3. ebpf feature-specific code

4. Prog type / hook specific code

5. Repositories and CI/CD
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Issue 1: Compiler-specific code (1/2)

• Compiler-specific pragmas and attributes
• #pragma GCC poison reallocarray
• __attribute__((alias("bpf_prog_attach_opts")))

• Compiler specific language extensions
• “= {}” is not legal in the C standard
• “#define LIST_POISON1 ((void *) 0x100 + POISON_POINTER_DELTA)” is not legal in the C standard
• #define NEXT_ARG() ({ argc--; argv++; if (argc < 0) usage(); })

• Assumptions about type sizes
• size_t new_cap = 1UL << new_cap_bits;

Proposal:
1. Adhere to standard C whenever possible, or at least features supported by all relevant compilers
2. Avoid unnecessary assumptions about type sizes
3. Cross-plat files should not hard code any compiler-specific pragmas or attributes
4. Move compiler specific defines to “compiler.h”, for use by cross-plat files
5. Each compiler will have its own “compiler.h” in a separate subdirectory

• e.g., gcc/compiler.h (but currently have linux/compiler.h in github.com/libbpf/libbpf), msvc/compiler.h
6. Use include path list to specify compiler directory, not hard coded in #include

• #include “compiler.h”
7. Avoid compiler specific ifdefs
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Issue 1: Example (2/2)

• gnuc/compiler.h:
#define LIBBPF_DEPRECATED(msg) __attribute__((deprecated(msg)))

#define LIBBPF_ALIAS(a) __attribute__((alias(a)))

…

6



Issue 2: Platform-specific code (1/2)

• Direct inclusion of platform specific headers
• #include <linux/limits.h>

• Non-ebpf-specific platform features that vary by platform
• rlimit, netlink, etc.

• Function implementations that vary by platform (see next slide)

• Proposal:
1. Put platform specific includes/defines in a header file like “platform.h”, for use by cross-plat files
2. Each platform will have its own “platform.h” in a separate subdirectory

• e.g., linux/platform.h, windows/platform.h

3. Use include path list to specify platform directory, not hard coded in #include
• #include “platform.h”

4. Avoid platform specific ifdefs
5. Do same for functions whose implementation varies by platform in .c files
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Background regarding syscalls (2/2)

• Q (Lorenz): Have you decided what your ABI / API boundary is going 
to be? Is it raw syscalls or the libbpf C API?

• A: libbpf.   bpf() is a shim over other libbpf APIs.

• Rationale:
• syscall() does not exist on Windows, and ioctls work differently on Windows

• FD’s only exist in the userland C runtime, kernel uses HANDLE which is ptr size

• bpf_attr used with bpf() contains FD’s so isn’t large enough to pass to kernel

• Implementation of many libbpf APIs thus must contain a userspace step

• Takeaway is that code that directly uses syscalls is platform-specific
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Issue 3: ebpf feature-specific code (1/2)

• New runtimes don’t support all core ebpf features, at least at the same time
• BTF, BPF fs, etc.

• eBPF features may thus vary by platform over time
• Some bpftool commands or args are feature specific

• bpftool btf …
• bpftool … --bpffs

• Same for libbpf:
• LIBBPF_API struct btf *bpf_object__btf(const struct bpf_object *obj);

• When a libbpf API is not supported on a platform, should it
a. Be absent? (my preference, based on things like IDE auto-completion)
b. Be present and always return failure?

• When a bpftool command/arg is not supported on a platform, should it
a. Be absent from help? (my preference)
b. Be present but always show an error message when tried?
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Issue 3: strawman proposal (2/2)

• Should feature-specific functions be
a. In a separate file from other functions
b. Surrounded in a feature specific ifdef like HAVE_BTF_SUPPORT

• What about code that enumerates cmds/args incl. feature specific ones, e.g. help 
text?
• Example: bpftool main cmds[] and “bpftool help” output

• Strawman:
• Put feature-specific code in a separate file per feature as much as possible

• In some cases, the separate file could even be in another repo (see later slide)

• Platform-specific file could expose a (possibly no-op) function that walks through the set of 
features

• After doing/showing anything that is platform-agnostic, enumeration calls a function 
implemented by each platform to pick up platform-specific variations 10



Issue 4: Prog type / hook specific code (1/2)

• The set of program types and attach types can vary by platform (and version)
• LIBBPF_API int bpf_tc_hook_create(struct bpf_tc_hook *hook);
• bpftool net help

➢ Note: Only xdp and tc attachments are supported now.
➢ For progs attached to cgroups, use "bpftool cgroup"
➢ to dump program attachments. For program types
➢ sk_{filter,skb,msg,reuseport} and lwt/seg6, please
➢ consult iproute2.

• Bpftool and libbpf today also hard code list of prog types, attach types, etc.
• In eBPF-for-Windows (and possibly other runtimes), the list is not fixed at compile time

• Some additions don’t require libbpf/bpftool “code” changes, e.g., additional attach type

• Proposal:
• Create platform-specific function to retrieve list

• Implement in platform-specific file

• For any prog type specific cmds/args, handle like ebpf features as discussed previously
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Integer values (prog types, etc.) (2/2)

• eBPF for Windows allows ebpf hooks & helpers to be implemented in 
additional drivers that are installed/loaded post boot
• Runtime-introspection is used to register them with verifier and execution context

• Integer values are of course centrally coordinated, but prog types & attach types also 
have UUIDs that can be used during development before getting an integer assigned
• libbpf_prog_type_by_name, libbpf_attach_type_by_name

• Currently integer values may vary by platform
• They typically don’t appear literally in source code for ebpf progs or apps

• No need to coordinate across all platforms to add a platform-specific one

• Libbpf has APIs to convert name to prog type, but bpftool hard codes the 
reverse itself (prog_type_name[]), which should probably be a libbpf API
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Issue 5: Repositories (1/2)

• Libbpf and bpftool have their own repos now but are just mirrors of bpf-next Linux source tree
• Alexei: “All patches have to go via bpf@vger and land via bpf/bpf-next trees. Non-linux patches would be 

awesome to see.”
• Issue: using bpf@vget and bpf/bpf-next is a huge hurdle for other runtimes used to github
• Not just due to risk of “some noise from linux and GPL fanatics”
• Hurdles provide incentive to fork or reimplement, which is not good for ebpf as a whole

• Do we really WANT lots of non-linux files in the linux source tree?
• They may require other SDKs or repos (e.g., ebpf-for-windows) as prerequisites to build (see next slide)

• Strawman proposal: 
• Put files for other runtimes in separate repos (could even be the repo for that runtime)
• Linux platform files stay in Linux source tree as is
• For now, keep platform agnostic files in the Linux source tree though this may or may not make sense 

longer term
• Use existing mirrors to add additional github workflows to as needed
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Issue 5: CI/CD testing (2/2)

• Daniel: “We also have BPF selftests which run on every submitted patch to the kernel and a lot of 
them involve libbpf as well [0]. My other hope is that if Windows relies on the very same libbpf, 
perhaps this would also allow for portability/mock testing the available Windows hooks on Linux 
and vice versa”

• When making a change in platform-specific code, when does CI/CD build/test happen on each 
runtime?
• Propose that platform-specific code stays in platform-specific repo with its own CI/CD build/testing

• Linux does not build/test Windows-specific code or vice versa

• When making a change in platform-agnostic code, when does CI/CD build/test happen on each 
runtime?
• A) Each runtime is tested (e.g., via github workflow) before a core change is merged

• Harder to coordinate if in Linux repo, and “libbpf has a higher rate of changes than the kernel” (Alexei)

• B) Linux runtime is tested before merge, other runtimes are tested after merge

• Higher risk of regression for other runtimes and creates incentive to fork/re-implement
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