
Security Level: public

Department name: Dresden Research Center (DRC)

Author’s name: Roberto Sassu

Date: 02/05/2022

DIGLIM eBPF



Contents

1. Goal of this presentation

2. Integrity overview

3. State of art

4. DIGLIM eBPF

5. Conclusions



Huawei Proprietary - Restricted Distribution3

Goal of This Presentation

• Propose a flexible and scalable solution for integrity protection at OS-level

• Describe its implementation with eBPF

• Discuss how it can be integrated in the eBPF kernel subsystem



Huawei Proprietary - Restricted Distribution4

Integrity Protection – What Are We Protecting Against?

Application

exec code

config file, keys, …

application state

func1()

func2()

if var == value

for (i=0; i<value; i++)

func3() func4()

func5()

impact on the 

execution flow

exec code

input

output

config file/

application state



Huawei Proprietary - Restricted Distribution5

Integrity Protection – What Are We Protecting Against?

Application

exec code

config file, keys, …

application state

func1()

func2()

if var == value

for (i=0; i<value; i++)

func3() func4()

func5()

impact on the 

execution flow

input

output

config file/

application state

func2() gets 

unexpected output 

from func1()

exec code

unexpected output



Huawei Proprietary - Restricted Distribution6

Integrity Protection – What Are We Protecting Against?

Application

exec code

config file, keys, …

application state

func1()

func2()

if var == value

for (i=0; i<value; i++)

func3() func4()

func5()

impact on the 

execution flow

exec code

input

config file/

application state

the application takes

a different branch

output unexpected output



Huawei Proprietary - Restricted Distribution7

Integrity Protection – How Do We Protect the Application?

Access control mechanism

Let only approved sources be loaded by the application

Does not work for application state!

Application

exec code

config file, keys, …

application state

end user

attacker



Huawei Proprietary - Restricted Distribution8

Integrity Protection – Generic Solution

proof of authenticity (sig)

software

accepted

vendor keys

application/file

types to inspect

policy

end user

sw vendor/ 

developer

Application

Application
Access control 

mechanism

sig verification

1 non-bypassable 2 no interference with 

the target of eval
3 verifiable



Huawei Proprietary - Restricted Distribution9

Integrity Measurement Architecture (IMA)

software

file

file sig (xattr, modsig)

Application

IMA
Application

accepted

vendor keys

application/file

types to inspect

policy

end user

sig verification



Huawei Proprietary - Restricted Distribution10

IMA Limitation

software

file

sig

Current format of RPMs RPM format required by IMA

(feature accepted for Fedora 37 [1])

• IMA cannot reuse existing information due to the different granularity

• Mass rebuild of a Linux distribution needed to support file signatures

[1] https://fedoraproject.org/wiki/Changes/Signed_RPM_Contents

https://fedoraproject.org/wiki/Changes/Signed_RPM_Contents


Huawei Proprietary - Restricted Distribution11

• Files in the initial ram disk cannot be appraised due to the lack of xattr support

> Huawei’s openEuler is using a non-upstream patch since openEuler 20.09 (released in September 2020)

> https://www.mail-archive.com/bug-cpio@gnu.org/msg00641.html

• Unusual default policy: appraise only files owned by root

> Changing file owner is sufficient to circumvent this policy (if there is no metadata protection)

• File metadata are not protected, even with the Fedora 37 feature

> Unclear how this problem will be addressed, another signature?

> Metadata protection (experimental) supported since openEuler 20.09 with our IMA Digest Lists extension

More IMA Limitations

https://www.mail-archive.com/bug-cpio@gnu.org/msg00641.html


Huawei Proprietary - Restricted Distribution12

Digest Lists Integrity Module (DIGLIM) eBPF

DIGLIM 

DATA

(eBPF)

accepted

vendor keys

sig verification

ref. digest 

values stored

in memory

Application

Application

policy

application/file

types to inspect

policy

DIGLIM SEC

(eBPF)

or IMA, …

Ref. digest conversion stage

(package format-dependent)

Access control stage

(package format-independent)

end user

parser

A (existing/new) source of

ref. digests is called digest list



Huawei Proprietary - Restricted Distribution13

Pros

+ Not constrained to a specific data format

+ Extensible, new parsers can be implemented

+ Linux distributions can do appraisal verification 

with almost no modification

+ More efficient, one signature verification for all 

the files in a package

DIGLIM eBPF Tradeoff

Cons

- Memory occupation

• Currently eBPF map fully preallocated

• Numbers not too bad with in-kernel implementation 

(208K of digests + 556K of indexes, Fedora minimal)

- Small delay at boot for parsing digest lists

• Depends on the number of digest lists

• Compensated by faster verification (lookup vs sig ver)

• Overall good performance with in-kernel 

implementation (measurement+appraisal of 5896 files 

in ¼ of the time, compared to IMA)



Huawei Proprietary - Restricted Distribution14

• IMA Digest Lists not upstreamed (too invasive)

• DIGLIM not upstreamed (minimal changes to IMA, however no answer at the third version of the patch set)

• To be honest, I didn’t consider eBPF as an option until I started studying it

• The idea of making DIGLIM available without the constraint of upstreaming it in the kernel made me study it

Why eBPF?



Huawei Proprietary - Restricted Distribution15

• It is a framework to add more functionality to the kernel without modifying the kernel

• It loads sandboxed programs, after statically checking their code

• Integrity assurance: no illegal memory accesses and finite program termination

• Confidentiality assurance: restricted access to memory

• bpf LSM: Linux Security Module to plug in sandboxed eBPF programs

> Lets eBPF programs implement defined security hooks (e.g. file open, execution, …)

> Lets eBPF programs make a decision on a requested operation based on information provided by the kernel (e.g. 

file digest calculated by IMA)

> Don’t require eBPF programs to be registered to the LSM framework (LSMs need to be compiled built-in in the 

kernel)

What is eBPF?



Huawei Proprietary - Restricted Distribution16

DIGLIM eBPF Architecture – Conversion Stage

data_input

array map

digest_items

hash map

1. bpf(BPF_MAP_UPDATE_ELEM, ...)

5. extract and add digests

bpf_mod_verify_sig()

eBPF helper

keys in primary or

secondary kernel keyring

policy

sig verification

kernel space

user space

diglim_user_loader

compact 

digest list

rpm

digest list

map

digest list

New parsers can be plugged in without 

any change to the other components

rpm parser 

(eBPF)

compact parser 

(eBPF)

map parser 

(eBPF)

2. trigger each parser

3. read data in the map

4. verify data

(function call)



Huawei Proprietary - Restricted Distribution17

Why Parsers Are Not in User Space?

Kernel

sig verification

file to evaluate

in end user system

vendor-built file 

digest calculation

Trust boundary

Kernel

sig verificationvendor-built package

digest calculation

Trust boundary

digest 

extraction

Question: how to extend the trust boundary to the additional component required by DIGLIM eBPF?

IMA Appraisal DIGLIM eBPF

file to evaluate

in end user system



Huawei Proprietary - Restricted Distribution18

DIGLIM eBPF Architecture – Access Control Stage

digest_items

hash map

policy

DIGLIM SEC

(eBPF)

bpf LSM

bprm_creds_for_exec

mmap_file

file_mprotect

file_open

kernel_read_file

bpf

executed

code

kernel space

user space

3. bpf_map_lookup_elem()

Application

exec code

1. request operation

IMA

2. ima_calc_file_hash()

4. allow/deny operation

digest lookup is cached in an inode_storage

map (invalidated by file_open hook)

additional logic to allow mmap for exec 

without lookup on temporary files (firewalld

and gdm do it)



Huawei Proprietary - Restricted Distribution19

Parsing Packages with eBPF – Is It That Complex?

version file type modifiers

count data length

digest1

algo

digest2 digestN

…

block 1

header

data

2 nested loops

- 0..9 blocks

- 0..count - 1 (for each block)

rpm magic number

num of tags

tag

data size

type

countdata offset

main

header

tag1

tag type

countdata offset
tagN

data

3 sequential loops

- 0..num of tags - 1 (get tag count and data offset)

- 0..dirnames count - 1 (to get the dir of each file)

- 0..files count - 1

algo digest

simple sequential read

compact digest list 

(LOC: ~130)

rpm digest list

(LOC: ~400)

map digest list

(LOC: ~40)

security module

(LOC: ~250)

total code to

verify/trust

(LOC: ~820)

version file type modifiers

count data length

digest1

algo

digest2 digestN

block 10

header

data



Huawei Proprietary - Restricted Distribution20

DIGLIM eBPF Threat Model

kernel space

user space

data_input

array map

digest_items

inode_storage

internal maps

bpf_mod_verify_sig()

eBPF helper

sig verification

DIGLIM SEC

(eBPF)

bpf LSM

parsers

(eBPF)

IMA

(only file digest 

calculation)

digest listsdiglim_user_loader

may corrupt processes handling digest 

lists or digest lists

may write malicious data to data_input

must NOT write data

to protected maps

must NOT add arbitrary keys

to the primary and secondary

kernel keyrings
must NOT be able

to tamper with the

bpf LSM

must NOT be able

to interfere 

with/prevent DIGLIM 

eBPF initialization

must NOT be able

to stop DIGLIM eBPF

DIGLIM eBPF TCB



Huawei Proprietary - Restricted Distribution21

DIGLIM eBPF Initialization – When?

time
kernel 

starts
bpf LSM

active

initcalls IMA ready and 

kernel keyrings

populated

modprobe

execution
kernel 

module 

loaded

modprobe

execution
kernel 

module 

loaded

/sbin/init starts

(initial ram disk)

not verifiable, only kernel module loading can be rejected

(found 368 executions of modprobe before IMA is initialized)

can be verified with IMA or DIGLIM eBPF

If some operations that the policy would deny are allowed, the system security state is unknown



Huawei Proprietary - Restricted Distribution22

DIGLIM eBPF Initialization Proposal – Built-in/Kernel Module

time
kernel 

starts

bpf LSM

active

initcalls IMA ready and 

kernel keyrings

populated

/sbin/init starts

(initial ram disk)

DIGLIM eBPF light 

skeleton loaded (built-in, 

kernel module)

wait for IMA and kernel

keyrings

DIGLIM eBPF

enforcement starts

(sync notification)

If built-in, any change to DIGLIM eBPF must be accepted in the upstream kernel

If kernel module, DIGLIM eBPF development could be out-of-tree (requires eBPF to load it)



Huawei Proprietary - Restricted Distribution23

DIGLIM eBPF Initialization Proposal – As /sbin/init

DIGLIM eBPF skeleton 

loaded by libbpf and DIGLIM 

eBPF enforcement starts

IMA enforcement

handover

Requires an additional enforcement mechanism (e.g. IMA) to verify executable code before /sbin/init is executed

time
kernel 

starts

bpf LSM

active

initcalls IMA ready and 

kernel keyrings

populated

/sbin/init starts

(initial ram disk)

IMA enforcement 

starts



Huawei Proprietary - Restricted Distribution24

• Built-in

> No code integration needed (follow upstream)

• Kernel module

> Invocation code is in upstream

> Take kernel module and eBPF programs from DIGLIM eBPF repository, and sign them

• User space

> Provide IMA enforcement until DIGLIM eBPF starts

> Take user space loader and eBPF programs from DIGLIM eBPF repository, and add file signatures (also to files in the initial ram disk)

• Common task for all cases

> Sign digest of digest list loader (DIGLIM eBPF enforcement active)

No mass rebuild, other packages can be used as they are (even those already released)!

DIGLIM eBPF Requirements for Linux Distribution Vendors



Huawei Proprietary - Restricted Distribution25

Demo



Huawei Proprietary - Restricted Distribution26

• Enforcing verification of executable code is not a very difficult challenge per se, but requires support in the 

ecosystem

• Fedora 37 feature introducing file signatures is a very good news, integrity feature available for users

• DIGLIM eBPF seems a more flexible and scalable option requiring much less effort for Linux distribution 

vendors

• Other LSMs, eBPF programs and IMA could benefit from DIGLIM’s repository of authenticated reference 

values

• Some minor dependencies need to be added to the kernel (e.g. support for PGP keys and signatures)

• Hope to make some progress with you at the summit!

Conclusions



Huawei Proprietary - Restricted Distribution27

• Kernel patches:

> https://github.com/robertosassu/linux/tree/bpf-diglim-v1

• DIGLIM

> https://github.com/robertosassu/diglim-ebpf/tree/devel-v0.1.3

Links

https://github.com/robertosassu/linux/tree/bpf-diglim-v1
https://github.com/robertosassu/diglim-ebpf/tree/devel-v0.1.3


Copyright©2022 Huawei Technologies Co., Ltd.

All Rights Reserved.

The information in this document may contain predictive 

statements including, without limitation, statements regarding 

the future financial and operating results, future product 

portfolio, new technology, etc. There are a number of factors that 

could cause actual results and developments to differ materially 

from those expressed or implied in the predictive statements. 

Therefore, such information is provided for reference purpose 

only and constitutes neither an offer nor an acceptance. Huawei 

may change the information at any time without notice. 

Bring digital to every person, home and 
organization for a fully connected, 
intelligent world.

Thank you.


