
kfuncs inlining in BPF programs

Preface

This presentation is based on the RFC 1 shared on November 2024 and
some unpublished follow up work.

The RFC manages to get some performance gains for a simplistic
benchmark by inlining a call to bpf dynptr slice and removing a
few jumps for which conditions are proven to be constant.

Unfortunately, the RFC is a one hack on top of another and it would be
interesting to hear thoughts from community.

1
https://lore.kernel.org/bpf/20241107175040.1659341-1-eddyz87@gmail.com/

https://lore.kernel.org/bpf/20241107175040.1659341-1-eddyz87@gmail.com/

Motivation
Simplistic example

int dynptr_slice(struct __sk_buff *skb)
{ ...

bpf_dynptr_from_skb(skb, 0, &psrc);
for (i = 0; i < N; ++i) // unrolled

bpf_dynptr_slice(&psrc, i, NULL, 1);
__sync_add_and_fetch(&hits, N);
...

}

Inlining a call to bpf dynptr slice and removing two conditional
jumps in its body gives it a 1.53x speedup.

Motivation
Which jumps are removed in example?

void *bpf_dynptr_slice(const struct bpf_dynptr *p, u32 offset,
void *buffer__opt, u32 buffer__szk)

{
...
type = bpf_dynptr_get_type(ptr);

switch (type)

...
case BPF_DYNPTR_TYPE_SKB:

if (buffer opt)

return skb_header_pointer(...);
else

return skb_pointer_if_linear(...);
...

}

bpf dynptr slice approximately 40 lines of code with 10
conditionals, not very convenient to hard-code the inlined variant.

The following slides explore parts of the automated solution:

▶ compilation of kfuncs to BPF

▶ embedding of BPF code into vmlinux

▶ inlining mechanics

▶ isolated kfunc bodies verification (as in RFC)

▶ non-isolated kfunc bodies verification
(as suggested by Alexei Starovoitov)

Compilation of kfuncs to BPF
Reusing kernel headers

#include < linux/bpf.h >

#include < linux/skbuff.h >

...
__bpf_kfunc
void *bpf_dynptr_slice(const struct bpf_dynptr *p, u32 offset,

void *buffer__opt, u32 buffer__szk)
{

const struct bpf dynptr kern *ptr = (struct bpf_dynptr_kern *)p;

...
if (buffer__opt)

return skb header pointer (ptr->data, ...);

else

return skb pointer if linear (ptr->data, ...);

...
}

Compilation of kfuncs to BPF
Makefile integration

kfuncs selected for inlining are moved to
kernel/bpf/inlinable kfuncs.c.

$(obj)/inlinable_kfuncs.bpf.bc.o: $(src)/inlinable_kfuncs.c

(Q)(CC) $(c_flags) -emit-llvm -c $< -o $@

$(obj)/inlinable_kfuncs.bpf.o: $(obj)/inlinable_kfuncs.bpf.bc.o

$(Q) $(LLC) -mcpu=v3 --mtriple=bpf --filetype=obj $< -o $@

$(obj)/inlinable_kfuncs.bpf.linked.o: $(obj)/inlinable_kfuncs.bpf.o
(Q)(STRIP) --strip-debug --remove-section=.*BTF* -o $@ $<

$(obj)/verifier.o: $(obj)/inlinable_kfuncs.bpf.linked.o

Compilation of kfuncs to BPF
clang -emit-llvm + llc drawbacks

This keeps kernel-side and bpf-side data declarations in sync, but has a
few downsides:

▶ it relies on compiler performing dead code elimination to remove
any functions/code fragments that introduce inline assembly, as
such assembly would be targeting native architecture, not BPF;

▶ skb header pointer and skb pointer if linear are static
inline functions defined in skbuff.h, whether or not inline
assembly is used in these functions is outside of BPF sub-system
control;

▶ this is clang/llvm specific solution, not applicable to gcc.

Compilation of kfuncs to BPF
Alternatives

A pipeline (during kernel build):

▶ vmlinux � vmlinux.h generation;

▶ some new internal kfunc annotation to expose non-kfunc
kernel functions in the vmlinux.h to be used only by inlinable
kfuncs;

▶ inlinable kfuncs.c compilation;

▶ embedding of inlinable kfuncs.bpf.o as an additional
section in vmlinux.

But this looses static inline functions like skb header pointer and
macro definitions.

Embedding of BPF code into vmlinux
BPF ELF file as data section

▶ use .incbin assembly directive to include BPF ELF object as a
blob in data section;

▶ use ELF symbol table to find kfunc bodies in this blob;

▶ resolve relocations inside kfunc bodies.

llvm-readelf-19 --symbols kernel/bpf/inlinable_kfuncs.bpf.linked.o

Symbol table ’.symtab’ contains 9 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000000000 0 SECTION LOCAL DEFAULT 2 .text
// kfuncs with bodies
2: 0000000000000000 40 FUNC GLOBAL DEFAULT 2 bpf_dynptr_is_null
3: 0000000000000030 48 FUNC GLOBAL DEFAULT 2 bpf_dynptr_is_rdonly
4: 0000000000000060 48 FUNC GLOBAL DEFAULT 2 bpf_dynptr_size
5: 0000000000000090 568 FUNC GLOBAL DEFAULT 2 bpf_dynptr_slice
// symbols needing relocation
6: 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND bpf_xdp_pointer
7: 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND bpf_xdp_copy_buf
8: 0000000000000000 0 NOTYPE GLOBAL DEFAULT UND skb_copy_bits

Embedding of BPF code into vmlinux
Relocations refer to internal kernel functions

llvm-objdump -dr inlinable_kfuncs.bpf.linked.o
...
0000000000000090 <bpf_dynptr_slice>:

...
43: call -0x1

0000000000000158: R_BPF_64_32 bpf_xdp_pointer
...
57: call -0x1

00000000000001c8: R_BPF_64_32 bpf_xdp_copy_buf
...
84: call -0x1

00000000000002a0: R_BPF_64_32 skb_copy_bits

Lookup these functions in kernel BTF using btf find by name kind
and patch imm fields of the relocated function call instructions.

Inlining mechanics

do check() is modified to replace calls to kfuncs found in the blob
with their bodies:

▶ replacement happens after main verification pass;

▶ if kfunc uses callee saved registers r6-r9 the spill/fill pairs are
generated for these register before/after inlined kfunc body at call
site;

▶ if kfunc uses r10 as a base pointer for load or store instructions,
offsets of these instructions are adjusted;

▶ if kfunc uses r10 in other instructions, such r10 is considered as
escaping and kfunc is not inlined.

Isolated kfunc bodies verification

▶ Before main verification pass, make a copy of an inlinable kfunc for
each call location, the goal is to do separate dead code elimination
for each kfunc call.

▶ When kfunc call is verified do a push stack() to visit the
corresponding dedicated kfunc body, put it in isolated context:

▶ establish an independent call stack;

▶ copy ”distilled” view of parameters from the callsite;

▶ Proceed with usual kfunc verification logic.

Isolated kfunc bodies verification
Independent call stack

Isolate BPF program from kfunc verification, but still get some analysis
result for kfunc body:

▶ setup frame #0 with fake representation for dynptr:
two stack slots with register spills holding specific values;

▶ setup frame #1 with actual kfunc parameters.

The dynptr stack slot is setup in accordance to bpf dynptr kern
definition:

struct bpf_dynptr_kern {
void *data; // KERNEL VALUE
u32 size; // size, dynptr type, read-only bit,

// encoded in bpf reg state->var off
u32 offset; // unknown;

Isolated kfunc bodies verification
Distilled view of parameters

Again, isolate BPF program state from kfunc body state, but try to
preserve information useful to prune branches:

▶ scalars copied as-is;

▶ null pointers copied as-is;

▶ dynptr parameters are represented as pointers to stack frame #0;

▶ everything else is copied as KERNEL VALUE.

KERNEL VALUE is an opaque value to represent values originating from
kernel. Any operation on KERNEL VALUE returns a KERNEL VALUE.

Non-isolated kfunc bodies verification
Idea

Make it possible for kfunc calls to see results from verification of prior
kfunc calls. For example bpf dynptr slice can observe the effects
of:

__bpf_kfunc int bpf_dynptr_from_skb(struct __sk_buff *s, u64 flags,
struct bpf_dynptr *ptr__uninit)

{
...
ptr->size |= BPF_DYNPTR_TYPE_SKB << DYNPTR_TYPE_SHIFT;
...

}

To infer the dynptr type. Then there would be no need to have special
logic for fake frame and dynptr setup.

Non-isolated kfunc bodies verification
Dual representation of stack objects

For this to work verifier needs to maintain two views for a single stack
object:

▶ one logical, used for program verification;

▶ one “physical”, used to pass data between inlinable kfunc calls.

struct bpf_stack_state {
struct bpf_reg_state spilled_ptr;
u8 slot_type[BPF_REG_SIZE];

};

struct bpf_stack_state {
struct bpf_reg_state spilled_ptr;
u8 slot_type[BPF_REG_SIZE];
/* moved from bpf_reg_state */
u32 ref_obj_id;
enum bpf_stack_obj_type type;
union {
struct { ... } dynptr;
struct { ... } iter;

};
};

Non-isolated kfunc bodies verification
Verification

▶ When inlinable kfunc call is verified:

▶ do semantic checks as for regular kfunc;

▶ distill kfunc parameters:

▶ scalars and stack object pointers are passed as is;

▶ everything else is passed as KERNEL VALUE;

▶ enter inlined function body as regular kfunc.

▶ Inside inlined function body refer to
bpf stack state->{spilled ptr,slot type}
when operating on stack objects.

▶ Upon exit from inlined function body return to caller,
as for regular subprogram call.

Discussion
Isolated vs non-isolated kfunc bodies verification

Isolated:

▶ Pros:

▶ no effect on the program verification logic;

▶ possible to isolate in log;

▶ easier to isolate effects on 1M instructions verification budget.

▶ Cons:

▶ Require special logic to setup the fake callee frame for each stack
object kind (currently only three: dynptrs, iterators and irq flags);

▶ 7 call frames max, 512 bytes per each frame.

Discussion
Isolated vs non-isolated kfunc bodies verification (continued)

Non-isolated:

▶ Pros:

▶ more generic, if verifier would model stack effects with high enough
accuracy (it only tracks 8 byte aligned spills).

▶ Cons:

▶ dual representation for stack objects adds complexity;

▶ conditional instructions in the bodies of inlinable kfuncs:

▶ make program verification log harder to reason;

▶ potentially hit 1M instruction limit faster;

▶ max 7 call frames or less, 512 bytes per each frame.

Discussion

▶ Which functions to inline?
Currently the following functions are considered:

▶ dynptr related functions;

▶ some iterator related functions, like num iter *;

▶ consider if htab map lookup elem can be inlined using similar
mechanics.

What else might be interesting?

▶ Alternatives to clang -emit-llvm + llc?

